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TBM Tunnel Collapses in Difficult Mountain Areas 

– Possible Avoidance and Prognosis

 Long and deep tunnels increase the hydro- and geological 

risk.

 Some illustrative cases with hydro- & geological hazards.

 Deceleration of advance rate is usually higher for

open-gripper TBM than for double-shield TBM with push-off-

liner capability: nevertheless choice of machine may be 

critical.

 Probe-drilling, seismic, and pre-injection can be of benefit. A 

case  record.

 Demonstration of QTBM prognosis modelling for various

cases of mountain tunnels, including faults and high stress.2
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The standard ’Q-system’ adjectives (with drill-and blast logic) 

need to be modified for TBM. 

« Lack of joints » also means need for more thrust, 

and more cutter change if abrasive hard rock, etc.
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Effect of high Vp 

giving low PR also 

seems a reverse of 

standard logic.

PR is best with low Vp

(in theory, if gripper-

thrust is possible) 

(but AR may be 

prejudiced by low VP)



Data from a TBM in granites, Malaysia. 

(Sundaram and Rafek, 1998)
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A survey of 145 TBM tunnels

GREAT MAJORITY OPEN GRIPPER TBM

(WHERE ROCK CONDITIONS COULD BE DESCRIBED 

MORE ACCURATELY)
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145 case-RECORDS SHOWED THE FOLLOWING ‘BEST’, 

‘AVERAGE’, ‘BAD-GROUND’ PERFORMANCE….on a log PR – log 

T – log AR graph (Barton, 2000).
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CONVENTIONAL TBM EQUATION: AR = PR X U     U = Tm 

UTILIZATION =U gradually declines with increased tunnel length.....if all time, 

even down-time, is included. Gradient (-)m is deceleration. 

These trends are very important for mountain tunnels!
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Double-shield machines with liner-element automation, formed very few of 

these 145 case records . Rock quality can be described only approximately 

when seen with difficulty during e.g.cutter change. SEE BLUE ARROW!



Guadarrama Base Tunnel 

2 x 28 km……….14 km by each TBM

(Double-shield TBM efficiency gave….m = -0.08 to -0.12)
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THE ’UNEXPECTED EVENTS’ (STANDSTILLS, BLOCKED CUTTER-

HEAD, EXTRA DELAYS FOR HEAVY SUPPORT)

STRONGLY RELATED WITH LOW Q-VALUES (more negative m)

i.e. mountain tunnel cases with blocked cutter-heads
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Gradient (-)m  is ALL-IMPORTANT!

• AR = PR x U  (where U= utilization for boring) 

• AR = PR x Tm (i.e. utilization is time-dependent) 

(T is actual hours)

(large -m in fault zones, small -m when no 

problems, maybe small -m with double-

shield, but pre-treatment / pre-injection 

of major faults will be needed......

i.e. reduce -m) 



Typical prognosis model expects greater thrust to give 

greater PR……occurs only if TBM sufficiently powerful!
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THE QTBM MODEL FOR TBM PROGNOSIS

(involves Q and machine/rock interaction)
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Note AR estimation for 24 hrs, 1 week, 1 month



FAULT  ZONES  AND  TBM
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WHY DO FAULT ZONES TAKE SO LONG WITH TBM  ????

PRACTICAL REASONS ARE ILLUSTRATED (Robbins et al., 1988) 

FOLLOWED BY ‘THEO-EMPIRICAL’ REASONS

PROBE DRILLING…..and PRE-TREATMENT needed!



Fault zones 

also create 

great 

problems for 

double-shield 

TBM  – if 

zone not pre-

treated……

following likely 

discovery by

probe-drilling.

(Evinos-Mornos, 

Grandori et al. 

1996)



Dul Hasti 

headrace 

tunnel 

(Kashmir)

….finally 

completed 

by D+B 

from 

power-

house end 

of project
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This minor shear zone (water/gravel/sand) delayed 

TBM tunnelling 283 days! (Dul Hasti, Kashmir)
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Later: in same tunnel:

sheared talcy/grafitic 

phyllites that had no 

stand-up time and 

“over-bored”.

8 m diameter 

12 m
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Pont Ventoux, Italy:

Note schist roof tiles in local 

villages. The planned 7km  

hydropower tunnel was parallel 

to this valley………..

…………

and parallel to the 

foliation…… and to the

(later discovered) fault zones
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The structural 

geology and the 

chosen tunnel 

route…….

proved to be a 

guarantee for TBM 

disaster.

The tunnel was ‘too 

deep’ for satisfactory 

geological 

investigations ..???



Unsuitable TBM…..steel sets in fault crushed by 

own grippers



Note time scale

.......

25 m in 

5 months
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 Too much water for 

stability in the fault zone. 

 Sand/gravel ‘delta’ 

behind back-up

 Derailment of the train was 

therefore frequent behind the 

back-up



1. Pinglin
(2. XUESHAN)

(Taiwan)

1991-2004

• 12.9 km (x 3)

• Cost US $ 560,000,000

• 25 lives lost during construction

• Tunnel renamed by President

• Unusual ‘TBM-hybrid’ project
28



The intended scheme – note lower pilot TBM
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Start from Eastern portal (    = destroyed in fault)
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Numerous 

by-passes needed 

to free 

cutter-head(s)

• TBM used to mine 

bench for long 

stretches
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At least 12 by-passes needed for the ‘pilot tunnel’
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Gilgel-Gibe 

II headrace 

tunnel. 

General 10-20 m 

per day 

progress. 

(26 km, two 

TBM, double-

shield, 7 m 

diameter)

4 years for 

completion

Two years 

delay here!
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Seli experiences with TBM at location “Event 19” – a 20 

months “standstill” due to 4 MPa mud-pressure, in a 760 m 

deep section of a fault zone, following 4.2 km in 14 months 

steady progress. 

Multiple attempts at by-pass, and multiple probe-drilling. The TBM 

deformed and displaced by squeezing mass, 600 mm backwards, and 

400 mm laterally.

All local support destroyed. The re-routed TBM drive eventually 

traversed the fault in a different location, using resin pre-injection. 

TTI December, 2009.
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THERE ARE VERY GOOD ‘THEO – EMPIRICAL’ REASONS WHY 

FAULT ZONES ARE SO DIFFICULT FOR TBM

We need three basic equations to start with 

1. AR = PR x U (all TBM must follow this)

2. U = Tm (due to the decelerating advance rate with time)

3. T = L / AR (obviously time for length L must be proportional to 1/AR)

Therefore we have the following:

4. T = L / (PR x Tm) (from #1, #2 and #3)

5. T = (L / PR) (1 / 1+m)

6. (this is VERY important for TBM……since m is strongly related to Q-
values …..in FAULT ZONES, e.g. in mountain tunnels)

7. It is important because very negative (-)m values make (1/ (1+m) TOO BIG



36

8. If the fault zone is wide (large L) and PR is low (due to collapses etc.) 
then L/PR gets too big to tolerate a TOO BIG component (1/1+m).

9. It is easy (too easy) to calculate an almost ‘infinite’ time for a fault zone     
using this ‘theo-empirical’ equation. (Three permanently buried, or fault-
destroyed TBM: Pont Ventoux, Dul Hasti, Pinglin…there are many more!)

BUT…Q CAN BE IMPROVED BY PRE-GROUTING !
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Comparing TBM with drill-and-blast

• Central qualities are required – if the TBM is to be much 
faster than D+B

• Are long tunnels faster with TBM?
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THE TBM-SOLUTION IS BEST ‘IN THE MIDDLE’ 

…but at a disadvantage at both ends

BUT DOUBLE-SHIELD TBM CAN CHANGE THIS….? (even in fault zones..?)

...seldom!
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LONG TUNNELS WITH FAULTS…….BEWARE !

(assuming long tunnels are faster by TBM is guaranteed to increase risk!)

(due to a ‘large scale’ Weibull theory…..more ‘flaws’ the larger the ‘sample’)



Clearly not a 

mountain 

tunnel – but a 

very 

important 

case record 

concerning 

mitigation 

measures.



Pre-drilling equipment for TBM needs to be designed and 

mounted, before starting the project!
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➢ 887m REMAINED WHEN NB WAS ASKED TO ADVISE SKANSKA IN 
1999,  2000

➢ THERE WAS A MAJOR REGIONAL (TOLO CHANNEL) FAULT ZONE AHEAD

➢ THIS HAD NOT BEEN DRILLED, AND SEISMIC INVESTIGATION HAD BEEN 
HINDERED BY CONTAINER-PORT TRAFFIC 

➢ A ‘PILOT’ HOLE WAS DRILLED (backwards from Stonecutter’s Island. The hole 
went only 731m….. stopped by the Tolo Channel fault zone
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Three attempts were made to (deviate) drill into the Tolo Channel Fault Zone. 

These are the results…..from the end of the 720m long horizontal hole.
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These are the Q-parameter 

statistics for this (fault zone) end 

of the 720m long hole

Characteristics of the zone all plot 

‘to the left’.

Qmean = 0.004 needs improvement. 
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SOME POSSIBLE ASSUMPTIONS OF THE 

EFFECT OF PRE-GROUTING

(as applied in this TBM tunnel)

• Several of the Q-parameters may be improved by pre-

grouting due to sealing of successive joint sets.....

• It is the only technique (besides drainage) for assisting 

TBM through difficult (= impossible) fault zones.....



EXAMPLE OF POSSIBLE CHANGES DUE TO 

GROUTING

• RQD increases e.g. 30 to 50%

• Jn reduces e.g. 9 to 6

• Jr increases e.g. 1 to 2 (due to sealing of most of set #1)

• Ja reduces e.g. 2 to 1 (due to sealing of most of set #1)

• Jw increases e.g. 0.5 to 1 

• SRF unchanged e.g.1.0 to 1.0

Before pre-grouting:

• Q= 30/9 × 1/2 × 0.5/1 = 0.8

After pre-grouting:

• Q = 50/6 × 2/1 × 1/1 = 17
46
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IMPROVING ROCK MASS PROPERTIES THROUGH PRE-GROUTING

Example of  rock mass and tunnelling improvements that might be 

achieved by pre-injection. In poorer quality rock masses there 

could be greater improvements

Before pre-grouting After pre-grouting

Q = 0.8 (very poor)

Qc = 0.4

Vp = 3.1 km/s

Emass = 7 GPa

Q = 16.7 (good)

Qc = 8.3

Vp = 4.4 km/s

Emass = 20 GPa

B 1.6m c/c

S(fr) 10 cm

B 2.4m c/c

none
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A (drill-and-blast) 

contractor’s experience 

with influence of Q-value 

on relative time (and 

cost).

Benefit from pre-grouting is 

in same area as large

(-)m deceleration in the 

case of TBM tunnels.
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1. No pre-grouting improvements….more than 1 year needed.
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2. Total tunnelling time with pre-grout cycles (two estimates). ACTUAL TIME 

2 months…FOR THE LAST 700m. TOTAL TIME FOR 3097m WAS 37 months.



Deep mine-access tunnel in 

Andes mountains, with long 

boreholes for mineral 

assessment.

Unusually deep boreholes 

therefore available for Q-

histogram logging.
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Note five fault zones modelled
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Part of the prognosis of the TBM mine-access tunnel, 

where a lot of deep coring was available

from mineral exploration holes.
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DEEP TBM TUNNEL 

FOR MINE ACCESS

Application of QTBM  

where faulted zones 

interrupt 

fast progress
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An early sheared zone in same tunnel – many delays as 

drilling equipment for probing/injection not yet mounted
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Unexplored, faulted conditions, can give 

prognoses like this….without pre-treatment.
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ULTRA DEEP TUNNELS 

AND

ROCK BURST THREAT
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VERY DEEP TBM TUNNEL (PLANNED) THROUGH 

ANDES MOUNTAINS IN PERU (max. 2.6 km cover

…slightly more than JINPING II …..and 28 km long)
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DO NOT UNDER-ESTIMATE 3 X (σ1 – σ3) = σmax

but also do not OVER-ESTIMATE σC
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Also from Q-system…….beware σθ /σc !!
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“FRACOD” and physical models of boring in over-stress
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Rock-burst problems…..high SRF….low Q
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Site

Date

TIME FOR TUNNEL COMPLETION (months)

96.8
14/02/2010

Contract Norsk Hydro Projects

Santa Maria HEP PERU, 14 km pressure tunnel

Nick Barton & Associates
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zone 8

zone 9

zone 10

zone 11

OVERALL



Vertical stress too 

high in relation to 

UCS or σc
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FINALLY A BRIEF COMPARISON

OF OPEN-GRIPPER AND

DOUBLE-SHIELD TBM

(in two tunnels for high-speed railway)
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Cumulated time for 

nine simulated 

weakness zones is 

nearly three months 

(2.9 months).
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A NARROW WEAKNESS ZONE
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SOUTH TUNNELS

Comparing open 

gripper TBM and 

double-shield

TBM

(21 months or 10 months,

but minus weakness zones 

prognosis)
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CONCLUSIONS

1. Whether single-shield or double-shield, must 

probe-drill and pre-treat major fault zones.

2. Do not assume engineering geologists are 

superfluous if double-shield.

3. Pre-injection helps to improve most of the six 

Q-parameters…….(-m) less negative.

4.  Do not underestimate the tangential stress 

concentration in relation to (0.4 x ) UCS
71


